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EQUATION OF STATE OF MATTER AT SUPERNUCLEAR DENSITY s

E. R. Harrisont
Theoretical Division
National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland

We shall consider briefly the possible nature of the

equation of state of matter at supermuclear density. This is

of interest in such subjects as cosmology and gravitational collapse.
'By supermiclear density we mean a density exceeding that of
_ordinary nudew matter. Since mucleons in nuclei are spaced
approximately 1 fermi apart, we have in mind proper densities

of p > 10" g em™. Zel'dovitch (1962) has shown on the basis of
a vector meson mdel'that as the supermuclear density increases
inanlsouvpieﬂnidthepressuretenastoeqmltheenargy
density. Our ai;l 15 to Bhov' ‘b‘hat :lt is unl:!.he]y tha.t Zel'doviteh'
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where p is the pressure and ¢ = pc2 is the energy density. Both 1
p and v are mtrices.vhich can be diagonalized for microgscopic ‘ ; 1
elements of fluid. For a photon or neutrino gas, in which the a8
particles have zero rest maess,
| Ve
Vv = u—l ! (2) .
q -
where q = 1, 2, or 3 is the number of spatial degrees of freedom.
When the gas is isotropic, g = 3, and therefore according to (2), ‘:
_ P
v = 4/3, and p = ¢/3. For a gas containing a class of particles b
| '
of energy Ei = Yimicz, vhere o, is their rest mass and Yy is . {
e o / ;
/- the ratio of energy to rest energy, b
P ; ' | f
s : ! '
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~-if the interaction energy is ignored. By regarding the energy

- contributioﬁ from the various interaction fields as a gas of real
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and virtual bosons, the effective value of y for the fluid can

be evaluated by integrating (3) over the various distribution

functions of the particles. Since v, < (q + 1)/q for all classes

of particles, we have in general
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1spcdtl (1)
q

for all fluids. The lower limit is for a gas of zero préssure, and
; the upper limit is for a gas containing only particles of zero

rest mass. It is also noticed that the veloecity of sound is
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in the app:opriate direction, and has its mxinnm value of vy =¢

\ N .
~at q'= 1, as one would expect. In an isotropic gas, which is of

5 main interest, (4) becomes-1 < p < 4/3 and therefore p < ¢/3, and
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gives v_ < c/3 % .

In spite of the complexity of the particle states at super-

~ nuclear density our classical picture indicates that 1 € v < 4/3
mist still hold true in an istropic fluid. It would also seem

reasonable to suppose that at supernuclear density v has a value

close to 4/3. Using the adisbatic relativistic equation:

d (eV) + padVv = 0

1 for a variable volume V, we have from (1) that

,QV

Assuming v is constant in a given density range, it follows that =~
" ‘ \ t" -\N . ) "', ] - .

>

.- “\“\. | G;Q"v‘v \ w (8)

'
~
o
AT ;‘W' T s s S

/
y

o LT

-




. 4 . -5 {
and if v has a value close to 4/3, then ¢ « V-u/j, as in a ;
relativistic ideal gas. r .
The relatively simple picture outlined sbove has been thrown ! ‘
into a state of confusion by Zel'dovitch's (1962) suggestion \ *
that strong interactions increase the value of v, and that in the S
: limit of high density in an isotropic fluidyv - 2, aud therefore = | ,
% : p -+ ¢ and v, = c. It is argued that the range of variation of v E’
is 1<v <2, and not 1 s v < 4/3 as given by the previous argument. P(
5 Anisotropy in such a fluid is now impossible as this would imply ' { ' ’
% ‘l;hat the velocity of sound could exceed the velocity of light. ,‘
é Zel'dovitchk suggestion is based on a simple model in which ‘ ,
§ stationary baryons interact through a vector meson field. F '
% } The Proca equations (Morse and Feshbach, 1953) for a vector 3
; , . /

(9b)
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with the gauge condition
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vhere A and ¥ are the pbtentials, and J and P, Bre the current and
charge densities. These Lorentz invariant equations are for
"nyperphotons" (vector mesons) of rest mass p = #/Ac. When p = O,
they reduce to Maxwell's equatic;ns for photons of zero rest mass.
Zel'doviteh assumes stabtic conditions and the Proea equations thete-

fore become

m— i -2% =0 " (10)

SN

-Eeﬁce, i g“"fmr 1s the wupling eensta.nt, _vhere g is the baryOn

"charge R the sohrl‘.ion is the . Xukawa-type potential
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Zel'dovitch then shows that if there are n baryons per unit

volume, and m is the baryon mass, the energy per baryon is 2

E = ma + 3% gznj. Mav = mc2 + 2rg®nA2 a

¢
TR P T

and the energy density is therefore

— R . ; W
] oL ) . ¢ = mmc® + 2rg®n3\2 (12) :
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T I} it i.s assumed that the mge k of the interaction is independent ’

of ‘density, it follows from (6) that the pressure is
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Comparing (12) and (13) it is seen that in the limit of high
density we have p — ¢, and according to (1) v therefore approaches
a value of 2. The assumption that the potential (11) is density
independent means that the range )\ of the interaction at high
densities is large compared with the interbaryon distance. The
interaction f.ﬁerefore tends to become long-range and collective
rather than short-range, thus aceounting for v approaching the
va.lue of 2.

The follorwing comments must be made regarding Zel'dovitch's
ti'eatment. At supernuclear densities it is physically un-
realistic to ignore the high energy of the baryons imposed by
the exclusion principle. In ordina.ry nuclear matter the idea.l

gas laws provide a good starting point for calculating the energy

/ shift (Weisskopf 1950, Bell and Squires 1961), and potential

functions are employed to obtain improved approximations. ‘When

the internucleon distance is less than the nucleon Compton wave=

' length or p >~ 1017 gcm'3, the idea of stationary baryons is

B

completely unacceptable since the mcleuns now have energies ex- /
ceed:Lng 1 GeV and there is copious prodnction’ a.mong other things, o

' of micleons and hyperons (including their antiparticles). A

Purther unsatisfactory feature of the model is that 1t singles
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out unit-spin mesons and neglects the rest of the meson mltiplets.
_.Let us, however, ignore the unsatisfactory nature of
Zel'dovitch's model and accept the potential (11) as a crude
phenomenological descr;ptian of shdrt-rangg—: interasctions. As
the density increases (ami the available energy involved in the
interactions also increases) ihe hig,ﬁer mssés of the meson hier-
archy will progressively predominate in the interactions. In effect,
A will get smaller and the short-range character of strong inter-
actions will be preserved. Thus, the potential (11) can no longer
be regarded as density independent. As an example, levy (1952)
points out that the higher order potentials behave as exp (-xr/\)
and involve the exchange of X mesons. It is to be expected that
£he range of the predominant A’:Lnteracrbion is comparable with the
mterba.ryon ‘distance , and therefore. h is related to density by
a.nI expression of the kind A\ = qn-& where g is of t.he order \mity. |

e

Equa.tions (]2) and: (15) now become

(14)
. : ‘\\‘ e *
o =5 g ~ N (15)
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and these equations have the merit that they yleld the physically
acceptable result that v has a maximum value of L/3.

Despite the complexity of the interactions in matter at
supernuclear density it is unlikely that our earlier arguments
concerning the maximm possible value of v are in error. Althqugh
Zel'dovitch's model possesses several unacceptable fea‘!:;ures, it is
nevertheless interesting to notice that if it is applied in a
slightly more realistic manner then the maximum possible value of

v in an isotropic fluid is also 4/3.
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